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ABSTRACT 

The matchings in a complete bipartite graph form a simplicial complex, 

which in many cases has strong structural properties. We use an equiv- 

alent description as c h e s s b o a r d  complexes :  the complexes of all non- 

taking rook positions on chessboards of various shapes. 

In this paper we construct 'certificate k-shapes' ~.(m, n, k) such that if the 

shape A contains some ~(m, n, k), then the (k-1)-skeleton of the chess- 

board complex A(A) is v e r t e x  d e c o m p o s a b l e  in the sense of Provan 

& Billera. This covers, in particular, the case of rectangular chessboards 

A = [m]×[n], for which A(A) is vertex decomposable if n __. 2 m - l ,  and 

the (Ira ~ - - - i ~ J - l ) - s k e l e t o n  is vertex decomposable in general. 

The notion of vertex decomposability is a very convenient tool to prove 

shellability of such combinatorially defined simplicial complexes. We es- 

tablish a relation between vertex decomposability and the CL-shellability 

technique (for posets) of Bj6rner & Wachs. 

0. I n t r o d u c t i o n  

Consider a chessboard of size m x n. [We will assume m _< n for this introduction.] 

Every n o n - t a k i n g  r o o k  c o n f i g u r a t i o n  (that is, no two rooks on the same row 

or column) on the chessboard can be identified with the set of squares it occupies. 

The set of all such rook configurations forms an abstract simplicial complex: the 

empty set of rooks is non-taking, and any subset of a non-taking configuration is 

non-taking as well. 
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This simplicial complex, the chessboard  complex Am,n, appears in several 

interesting combinatorial situations: as a coset complex K(m, n) of certain sub- 

groups in the symmetric group studied by Garst [Ga, Chap. 3], as a multiple 

deleted join of a 0-complex as studied by Sarkaria [Sa], as a complex of injective 

functions :P,,~,n in the analysis of Tverberg-type problems by Vredica & 7,ivaljevid 

[VZ, Sect. 2], as the matching complex M(Km,n) of a complete bipartite graph 

(see Lov~sz & Plummet [LP]), thus as an intersection of two partition matroids, 

and probably in many more situations - -  see also the introduction of [BLVZ]. 

Since the chessboard complexes are so easy to define and appear to be the 

combinatorial essence in such diverse situations, there is a strong interest in un- 

derstanding their combinatorial and topological properties. In particular, several 

of the applications (as in [VZ]) need information on connectivity properties. 

Recall the following (well-known) hierarchy of properties of simplicial com- 

plexes: 

vertex decomposable ==~ shellable ~ homotopy CM ==~ CM. 

The first result for chessboard complexes was Garst's Theorem [Ga, Thm. 15] in 

1979: Am,~ is Cohen-Macaulay (CM) if and only if n > 2m-1.  This was recently 

strengthened by BjSrner, Lov~sz, Vredica & Zivaljevic [BLVZ]: the complexes are 

always min{m-2, L~ 3--+-~J-2}-connected, so the (L~ a---+~J-1)-skeleton of Am,,~ 

is homotopy Cohen-Macaulay. The Cohen-Macaulay property has strong enu- 

merative consequences (see [Bj2, Sect. 7.5]): we get information on the matching 

polynomials of complete bipartite graphs [LP] from this. 

On the combinatorial side this suggests - -  see the 'Final Remark' by BjSrner, 

Lov~sz, Vredica & Zivaljevi~ - -  that Am,~ should be shellable for n > 2 m - l ,  and 

that the ([~ 3--+~J-1)-skeleton of A,~,~ should be shellable. [Whoever thought 

about this noticed, however, that the 'obvious approach' does not work: the 

lexicographic ordering on the facets does not produce a shelling for the natural 

orderings on the vertices; also, it is not clear at first how the condition n > 2m-1  

should come into such a proof.] Shellability is a strong statement: in addition to 

homotopy Cohen-Macaulayness it implies (at least in principle) the construction 

of a distinguished homology basis, see BjSrner's discussion in [Bj2, Sect. 7.7]. 

Here we establish an even stronger condition: the (/~+m+l/-1)-skeleton of kL 3 J 

Am,n is vertex decomposable in the sense of Provan & Billera [BP] [PB], see 

Section 1. According to Provan & BiUera [PB, Thin. 2.10] this additionally 
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implies the "Hirsch bound" on the diameter; applied to the skeleta of chessboard 

complexes Am,,~ it says that every non-taking rook position of k rooks on the 

(mxn)-chessboard can be transformed into any other position in at most m n - k  

single-rook moves, so that every intermediate position is non-taking as well, if 

k < / ~+~+1! It seems that this upper bound for the number of moves is non- - L 3 J"  

trivial, although by far not best possible. It would be interesting to determine 

the exact bound. 

Our proofs of vertex decomposability will apply to the skeleta of chessboard 

complexes of quite arbitrary shapes (corresponding to matching complexes of 

general bipartite graphs). Following [BLVZ], we will identify the squares in the 

'infinite chessboard' with Z 2 in matrix notation, where the square (i, j) lies i 

rows below and j columns to the right of some reference point/square (0, 0). 

In the course of the investigation it turns out that the structure that determines 

the shellability of the 'classical' rectangular chessboard complex is the largest 

diamond shape 

E~ := {(i,j) E [m]×Z: 0 < j - i  < m - l } .  

it contains, where we use the notation [m] := {1, . . . ,  m}. Figure 0.1 shows the 

diamond shapes El, E2, E3, where every square is labeled by the corresponding 

pair in Z 2. 

El: ~ E2: 2,3 
E3: 

[i,i11,211:3 . . . . . . . . .  

2,2 2,3 2,4 

. . . . . . . . . .  3 , 3  3,4 3,5 

Figure 0.1: The diamond shapes E,~ 

With these shapes, we find that for any subset A of an (m x n)-board that 

contains an isomorphic copy of the diamond board Em (i.e., allowing for row 

and column permutations and transposition), the chessboard complex A(A) is 

shellable. 

THEOREM 0.1: Let A C_ [m] x Z be a finite subset that contains the diamond 

shape Era. Then A(A) is vertex decomposable o[ dimension m-1 .  

This formulation is not only stronger than the statement for rectangular chess- 

boards, it also admits a simple inductive proof. In this paper, we actually will 
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give the proof in two versions. In Theorem 2.3 we will demonstrate the s implic-  

i t y  of the proof technique on the basic version for rectangular chessboards, which 

yields a statement that is weaker than Theorem 0.1. However, Theorem 0.1 can 

be proved along the same line, and in Theorem 3.3 we will show the p o w e r  of the 

technique by proving the most general version we know for skeleta of complexes 

of planar shapes; this Theorem 3.3 also contains Theorem 0.1 as a very special 

case - -  see the end of Section 3. 

1. Vertex decomposable complexes and shellability 

An (abstract, finite) simplicial complex is a family of sets A C 2 E that  contains 

0 and with any set also contains all its subsets. See BjSrner [Bj3] for a basic 

treatment of simplicial complexes and their combinatorics. Here we will only 

review the notions that  are needed in the following. 

We refer to E as the g r o u n d  set ,  which contains the set  o f  v e r t i c e s  V(A) = 

{c E E: {e} • A}. We admit the e m p t y  c o m p l e x  A = {0} in our discussions 

(and use it to start inductions on the size of the vertex set). 

Using geometric language, we refer to the sets in A as faces  of A, where the 

dimension of a face is one less than its cardinality: dim(A) = IAI-1 for A • A. 

The dimension dim(A) of A is the largest dimension of a face in A. A simplicial 

complex is p u r e  if all its maximal faces have the same dimension. For example, a 

simplicial complex of dimension 0 is just a non-empty set of vertices. A simplicial 

complex of dimension 1 is a graph with at least one edge; it is pure if it does not 

have an isolated vertex. 

A s i m p l e x  is the simplicial complex given by all the subsets of a finite set. 

Thus every simplex is pure; the simplex of dimension - 1  is the empty complex. 

Finally, the k-skeleton of A is the complex of all faces in A of dimension at most 

k: 

A <k := {A • A: IAI _< k+l} .  

We will use the following notation for deletions, restrictions and links. If A is 

any subset of the ground set, then the d e l e t i o n  of A from A is A \ A  := {B • A: 

A A B = ~}. In particular, we need the case where A = {v} is a single vertex of 

A. In this case we write A \ v  := A \ { v } .  We will also use the r e s t r i c t i o n  to a 

subset of the ground set: A(A) := {B • A: B C A} = A \ ( E \ A ) .  Similarly, for 

any face A • A the l ink is A/A := {B • A: A N B = 0, A U B • A}. Again, we 

write A/v := A/•v} for a vertex v of A. [This notation follows matroid theory 
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usage. One key observation is that  deletions and links commute. Any deletion 

of a link, or a link of a deletion, will be referred to as a m i n o r  of the complex in 

question.] Using deletion and link of a vertex as primitives, we get the following 

recursive definition. 

Definition 1.1: Provan & Billera [BP] [PB, Def. 2.1]. A simplicial complex A is 

ve r t e x  d e c o m p o s a b l e  if it is pure and it is either empty, or it has a vertex v 

such that A \ v  and A/v are vertex decomposable (of smaller size). | 

(If A is pure of dimension k, then A/v is automatically pure of dimension k-1.  

If A \ v  is also pure, then either d im(A\v)  = k, or we get that  A is a cone over 

A \ v ,  where A \ v  = A/v has dimension k-1 .  A good example of a complex that  

is pure but not vertex decomposable is the 1-dimensional complex I I ") 

Equivalently, a non-empty complex A is vertex decomposable if and only if it 

is pure and it has an ordering (vl, v2 , . . . ,  v~) of the vertices such that 

A \ {v~ , . . . , vn}  and A/v~".{V~+l,...,v~} are both vertex decomposable, 

for l < i < n .  

This is the criterion used in the proofs of this paper. In fact, using the induction 

hidden in this, it suffices to require 

A \ { v i , . . . ,  vn} is pure and A/vi\{Vi+l,. . . ,  v~} is vertex decomposable, 

for l < i < n .  

Thus the proof of vertex decomposability amounts to specifying a good vertex 

ordering for the complex (called shedd ing  o rders  in [PB, p. 587]) and recursively 

for some of its minors. 

For example, to show that A4,s is vertex decomposable, our proof in Theo- 

rem 2.3 below shows that we can take any vertex ordering that  picks the squares, 

for example, with increasing labels according to the following figure: 

4 5 7 7 9 9 11 11 

6 6 3 7 9 9 11 11 

8 8 8 8 2 9 11 11 

10 10 10 10 10 10 1 11 

Figure 1.1: Shedding order for Aa,s = A([41 X [81) 
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The following simple lemma will be the key to our inductive treatment of 

skeleta of complexes. Note that it contains the fact that the cone of a vertex 

decomposable complex is again vertex decomposable as a special case. The anal- 

ogous statements for shellable and for Cohen-Macaulay complexes are also quite 

obvious. 

LEMMA 1.2: //' A is a finite simplicial complex whose k-skeleton A <-k is vertex 

decomposable, then the ( k + l )-skeleton (A * v) <k+l of the cone over A is vertex 

decomposable as well 

Proof: In fact, we show that if (Vl,...,Vt) is a shedding order for A <k, then 

(v, V l , . . . ,  vt) is a shedding order for ( A ,  v) <k+l. 

First we note that ( A .  v)<k+ 1 is a pure complex of dimension k+l ,  whose 

maximal faces are the k-faces of A augmented by v, and the (k+l)-faces of A. 

Now to see vertex decomposability, we use induction on t and simply compute 
(A • v ) - < k + l / v ,  = • v ) / , , ) -  = 

decomposable by induction, and 

( A  • v ) < - k + l " , v t  = ( ( a  • v ) ' , v t )  = 

vertex decomposable by induction. | 

( (A/vt )  * v) <~, which is vertex 

((A\vt)  • v) <k+l, which is also 

It seems to be a natural problem to relate vertex decomposability for complexes 

to the lexicographic shellability technique of BjSrner & Wachs [BjW]. 

PROPOSITION 1.3: IT A is vertex decomposable, then p(A) has a recursive atom 

ordering in the sense of  [BjW]. The converse is false in genera/. 

Proof'. We prove, more precisely, that any shedding order for.A is a recursive 

atom ordering for the face poset p(A). Since p(A) is a semilattice, we can use 

the Wachs & Walker formulation of recursive atom orderings [WW, Sect. 7]: we 

have to prove that if ( v l , . . . ,  vt) is a shedding order for A, then A/vi  has a 

shedding order in which the vertices in {vj: j<i ,  {vi, vj} E A} come first. 

Thus it suffices to verify the following claim: if ( v l , . . . ,  vt) is a shedding or- 

der for A, and (v~,.. . ,v~,) is a shedding order for A / v i \ ( v , + l , . . . , v t } ,  then 

(v~,.. . ,  v~,, v i+t , . . . ,  vt) is a shedding order for A/vi .  (From these shedding or- 

ders one could delete the elements vj (j > i) such that {vi, vj } ~t A, for which vj 

is not a vertex of the complex A/vi .)  

This is easily proved by induction on t - i ,  using some observations in the proof 

of [PB, Prop. 2.3]. The case {vi,vt} ~ A corresponds to deleting an irrelevant 
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element which is not in the ground set. Now if {v~,vt} E A, then we compute 

(A/vi)".vt = (A \ v t ) / v i  and (A/v~)/vt = (A/vt)/v{.  In both cases we are done 

by induction. 

For the converse, consider the boundary complexes of simplicial polytopes. 

These complexes are not all vertex decomposable [KK, Sects. 6.3, 6.4], although 

their face posets have recursive atom orderings (RAO) by [BjW, Thm. 4.5]. | 

Altogether we think that one should have the hierarchy: 

A vertex decomposable ==~ p(A)  has RAO ==~ A shellable 

Here Proposition 1.3 proves the first implication and shows that the converse 

is false. The second implication remains a conjecture, where we do not know 

about the converse either. However, it is clear that vertex decomposability of A 

implies shellability, by Provan & Billera [BP] [PB, Cot. 2.9]. We note that the 

chain of implications can be continued as 

A shellable ¢=~ p(A) has RCO ~ A(p(A)) vertex decomposable 

The first equivalence, between shellability and recursive coatom orderings (RCO), 

is a main result of [BjW], while the second implication, involving the barycentric 

subdivision sd(A) = A(p(A)) of A, is an unpublished result of A. Bjbrner [Bid]. 

2. Rec tangu la r  chessboard complexes 

Definition 2.1: For any (finite) subset A C_ Z 2, we define the general ized 

chessboard complex of  A as the simplicial complex 

A(A) := {B C_ A: i~i  t and j ¢ j t  for (i,j), ( i ' , j ' )EB, ( i , j )¢( i ' , j t )} .  | 

For this, we can view Z 2 as the ground set, and let 

A(Z 2) = {BC_Z2: i¢i '  and j C j '  for (i,j), (i ' ,j ') E B, ( i , j )¢( i ' , j ' ) }  

be the chessboard complex on the complete infinite chessboard, so that for a 

finite set A C_ Z 2, the chessboard complex A(A) is the restriction of the infinite, 

infinite-dimensional complex A(Z 2) to A. 

In particular, this definition includes the 'classical' rectangular chessboard com. 

plexes as ~X..,. = A([,.]×[n]). 
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LEMMA 2.2: Let A be a finite subset of Z 2, and ( i , j )  E A. Then the deletion 

and the link of the vertex ( i , j )  in the chessboard complex A(A) are given by 

A ( A ) \ ( i , j )  = A ( A \ ( i , j ) )  and A ( A ) / ( i , j )  ~- A(Ai,j),  

where A~ d is the set of all ( i ' , j ' )  E 7, 2 such that we have ( i " , j " )  E A with 

i' = i" < i or i'+1 = i" > i, and with j '  = j "  < j or j ' + l  = j,i > j .  

Proo~ This just states that the deletion of a vertex from a chessboard complex 

corresponds to deleting the corresponding square from the board, whereas the 

link is obtained by removing the corresponding row and column from the board, 

where we get an isomorphic complex by "closing the gap". I 

THEOREM 2.3: I r A  is a/~nite set with [m]x[2m-1] C_ A C_ [m]xZ, then A(A) 

is a vertex decomposable complex of dimension m - 1 .  

Proof'. We proceed by induction on m, the case m = 1 being trivial. For m > 1, 

we use that  by induction 

Am-l,2m-2 = A ( [ m - l l x [ 2 m - 2 ] )  

is vertex decomposable of dimension m - 2 .  Now the complex 

A ([m--l] x [2m-2] U {(m, 2m-1)})  

is a cone over A.~-1,2.~-2 and thus vertex decomposable of dimension m - 1 .  

From this we use induction on IAI to see that  A(A) is vertex decomposable of 

dimension m - 1  for 

[m-1]x[2m-2]  U {(m, 2 m - l ) }  _c A C [m]x[2m-2] U {(m, 2 m - l ) } .  

In fact, the links we have to consider in the induction steps are isomorphic to 

A(A,~4) with 1 < i < 2 m - 2  with A,m~ = [m-1]x[2m - 3], so by induction they 

are vertex decomposable of dimension m - 2 .  

To complete the argument, we show that  whenever A is a finite set with 

[m]x[2m-2] U {(m, 2m-1)}  C_ A _C [m]xZ, 

then A(A) is vertex decomposable of dimension m - 1 .  Again we use induction 

on [A I, where we already know the claim for the case 

[ra]x[2m-2] U {(m, 2m-1)}  = A. 
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Now if ( i , j )  E A with j E Z\ [2m-2] ,  then [m-l]  x [2m-3] _C Ai,j, and thus 

A(AIj) is vertex decomposable of dimension m - 2  by induction. I 

3. Skeleta  of  chessboard  complexes  

Definition 3.1: A k-shape is a subset 2(m, n, k) C_ Z 2 given by 

~ ( m , n , k )  := {(i, j)  E [m]×[n]: - ( 2 k - l )  ÷ n <_ j - i  ~ ( 2 k - 1 ) - m  }. 

A k-shape is admissible  if m, n < 2k-1 and m-t-n-t-1 >_ 3k. 

2 k - n  ! 

I~ 2 k - m  *l 
"3 

m 

4 

n 

Figure 3.1: A typical admissible shape, E(18, 24, 15) 

For our induction we use that from a k-shape A, the following operations still 

leave a shape that contains (an isomorphic copy of) an admissible (k-1)-shape: 

(a) deleting the row and column of a square outside A, 

(b) deleting the last row and the last column, 

(c) deleting the last row and the last column, plus another row (column) that 

contains a square in the last column (row). 

LEMMA 3.2: For S(a,b) := {(i,j) E Z2: a <_ j - i  < b} with a < b and (i , j)  E Z 2 

we have 

S(a,b)i d D S(a+l,b)  for j - i  > b, 

S(a,b)~,i D S(a ,b-1)  for j - i  < a. 

Proof." There are three simple cases to check for the first claim (a sketch wil] 

help). The second one follows by symmetry. I 
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With the notation of Lemma 3.2, we have 

r (m,n,k) = [ml×in] n S ( - 2 k + l + n , 2 k - l - m ) .  

THEOREM 3.3: H A  C_ 7. 2 is a//hire set that contains (an isomorphic copy of) an 

admissible k-shape, then A(A) <k-1 is vertex decomposable of dimension k-1 .  

Proof'. We proceed by induction on k, the case k = 1 being trivial: the only 

admissible 1-shape is {(1, 1)}. For k > 1 note that  

~(m,n,k)m,n = [m-1]x[n-1]  A S( -2k+l+n ,  2 k - l - m )  

contains an admissible (k - 1)-shape, namely 

Z ( m - 2 ,  n - l ,  k - l )  

E (m-1 ,  n -2 ,  k - l )  

~ ( m - 2 ,  n -2 ,  k - l )  

if n < 2 k - l ,  

if m < 2k-1 ,  and 

if m = n = 2k-1.  

From this, and Lemma 1.2, we get that the skeleton A(A) -<k-1 of the chessboard 

complex for A = ~(m, n, k)m,,~ U ((m, n)} is vertex decomposable of dimension 

k-1 .  

As the next step we show that adding the squares of the last row and column 

to A = Z(m, n, k),~,n U {(m, n)} preserves vertex decomposability of the (k-1)-  

skeleton. That  is~ we claim that  A(A') is vertex decomposable for 

n, k)m,n U {(m, n)} C_ A' C n, k). 

Using induction on IA'I and the symmetry between m and n, we show that  A~,,~ 

contains an admissible (k-1)-shape for n - ( 2 k - 1 ) + m  <_ i < m. With this we 

have 2k-1  < n, and using Lemma 3.2 we compute 

A~,~ = ( [m- l lx [n -1 ] ) i , "  n (S(- (2k-1)+n,(2k-1)-m))~,m+ ~ 

_D[m-2]x[n-1] N S ( - ( 2 k - 1 ) + n + l , ( 2 k - 1 ) - m )  

-- ~ ( m - 2 ,  n - l ,  k - l ) .  

Symmetrically, for any j with m - ( 2 k - 1 ) + n  <_ j < n the minor A~5 contains 

an admissible (k-1)-shape, namely ~ ( m - 1 ,  n -2 ,  k - l ) .  With this we know that 

A(Z(m, n, k))<k-1 is vertex decomposable of dimension k-1 .  

Now let ~.(m, n, k) _c A; we use induction on IAI to show that  A(A) <k-1 

is vertex decomposable of dimension k-1 .  For this, we prove that if (i ,j)  e 
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Z 2 \ Z ( m ,  n, k), 

translate of one. 

First assume that  (i,j) e [m]×[n]. 

2k- l -m,  and compute 

~(m, n, k)i,j 

CHESSBOARD COMPLEXES 107 

then Z(rn, n,k)i,j contains an admissible (k-1)-shape, or a 

By symmetry, we may assume j - i  > 

= [m-1]×[n-1]  n S(-2k+l÷n,2k-l-m)~,j 

2 [m-1]×[n-1]  n S(-2k+2+n, 2k- l -m)  
_D [m-2]×[n-1]  n S(-2k+2+n, 2k- l -m)  

= E ( m - 2 , n - 1 ,  k - l ) ,  
which is admissible if n < 2 k - l ,  

2 [m-2]×[n-2]  n S(-2k+2+n, 2k-2-m) 
= E ( m - 2 , n - 2 ,  k-1) ,  

which is admissible if m + n + l  > 3k, 
_D [ m - 2 l x [ n - 2  l +  (0) n S(-2k+l+n, 2k-2-m) + (o) 

= + (0), 
which is admissible if m < 2k-1.  

where one of the three last cases applies: otherwise we would have n = 2 k - l ,  

m + n + l  = 3k and m = 2 k - l ,  thus k = 1. 

Now we treat the case where i E [m], but j E Z\[m].  This corresponds to 

deleting one arbitrary row from Z(m, n, k). Since the column corresponding to j 

does not hit ~(m, n, k), we may assume that j is large, j - i  > n. Thus we get 

~(m, n, k)i,j = [m- l ]  × In] O S(-2k+l+n, 2k-l-m)i,j 

_D [m-1]×[n] n S(-2k+2+n,2k-l-m). 

This contains 

~ ( m - 1 ,  n - 2 ,  k - l ) ,  

~ ( m - 2 ,  n - l ,  k - l ) ,  

~(m-2, n-2, k-1), 

which is admissible if m < 2k-1 ,  

which is admissible if n < 2k-1,  

which is admissible if m ÷ n + l  > 3k 

and one of the three cases occurs. Now again the case of j e [n], i E Z\[rn] 

follows by symmetry, and the last case, where i • [m], j ~t [n], is implied by any 

of the three previous ones. I 

In particular, let A = [m] × In] be a rectangular shape, and assume m _< n 

(without loss of generality). The complex A(A) has dimension m - 1 .  If n _> 

2 m - l ,  then Zm = Z(m, 2 m - l ,  m) C_ A, and thus by Theorem 3.3 A(A) <'~-1 = 

A(A) is vertex decomposable. (This proves Theorem 0.1.) If m <_ n _< 2 m - L  
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/ ~+~+1/ we get that ~(m, n, k) is admissible, and thus the (k-1) -  then for k := L 3 .J 
skeleton A(A) is vertex decomposable. The conjecture of Bjbrner, Lov£sz, Vre6ica 

& Zivaljevi~ [BLVZ, Conj. 1.5(a)] would imply that this k = / ~--m-~| is maximal. L 3 J 

As a special case we meet the "challenge" of Bjbrner, Lov~sz, Vre~ica & 

Zivaljevi~ [BLVZ, Sect. 5]: the complex of non-taking positions of at most 5 rooks 

on an (8×8)-chessboard is shellable: and our description implicitly contains an 

explicit shelling of A([8] x[8]) <4. In fact, the same is true for the 4-skeleton of 

the (7x7)-board, because ~(7, 7, 5) C_ [7] x [7] _C [8] x [8] is admissible. 

4. Final remarks 

The following characterization of matroid complexes is well-known (see [PB, 

Prop. 3.2.3] [Bj2, Ex. 7.4, Thm. 7.3.4]): if every restriction of A to a subset 

(including the complex A itself) is pure, then every such restriction is a matroid 

complex, and thus in particular vertex decomposable. 

In the following sense the chessboard complexes are very 'close' to being ma- 

troid complexes. We propose to call (A, A) a re la t ive  m a t r o i d  c o m p l e x  if 

A is a simplicial complex, A is a finite subset of its vertex set, and every finite 

minor of A that contains A (i.e., obtained by deleting or taking links of elements 

not in A) is vertex decomposable. Equivalently, A(A) is vertex decomposable, 

and every finite minor of A that contains A is pure. With this, the case A = 0 

corresponds to a usual matroid complex, whereas Theorem 3.3 establishes that 

(A(Z2) <k-l ,  E) is a relative matroid complex whenever E contains an admissible 

k-shape of Definition 3.1. It might be interesting to study the exchange proper- 

ties of such relative matroid complexes, with the aim of deriving diameter bounds 

that improve upon the Hirsch bounds (cf. the introduction). 

In view of Theorem 3.3 one could ask for a complete list of minimal certificates 

for vertex decomposability, that is, all minimal shapes (up to isomorphism) that 

determine a relative matroid complex. Here we only note that the list given by 

Theorem 3.3 is not itself complete: for example, A = {(1, 1), (1, 2), (2, 3), (2, 4)} 

is a minimal certificate shape for k = 2, distinct from the admissible shapes 

~(2, 3, 2) = ~2, its transpose ~(3, 2, 2), and ~(3, 3, 2) = {(1, 1), (2, 2), (3, 3)}, as 

given by Definition 3.1. 

However, the skeletal dimension k - 1 is best possible for each admissible shape 

~(m, n, k). In fact, consider the set 

A := {(i+m-k, i): 1 < i < k} u ~(m, n, k). 
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Then { ( i + m - k ,  i): 1 < i < k} is a maximal face of A(A), so the k-skeleton 

A(A) <k cannot be pure of dimension k. 

To treat infinite complexes, we need to adapt the notion of vertex decom- 

posability; this is quite straightforward for the definitions given after Defini- 

tion 1.1. (One can rely on BjSrner's treatment of infinite shellable complexes 

[Bjl, Sect. I(A)] for guidance.) With this, we can drop the finiteness assumption 

on A in Theorem 3.3. In particular, we get connectivity results for A(A) also if 

A is infinite (using compactness arguments). It is easy to see that  A(Z 2) is in 

fact contractible. 

It seems likely that our method can be applied to treat the complexes of higher- 

dimensional chessboards as well, which corresponds to the matching complexes 

of balanced complete hypergraphs. The connectivity results of BjSrner, Lov£sz, 

Vredica & Zivaljevic extend to this setting, see [BLVZ, Sect. 4]. They were further 

generalized by H. Eriksson [Bj4]. We will not pursue this here. 
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